Histórico
Os antigos pensavam que a luz tinha velocidade infinita, achando que ela poderia percorrer qualquer distância, por maior que fosse, sem gastar nenhum tempo para isso. Talvez o primeiro a tentar medir a velocidade da luz tenha sido Galileu. Tentou mas não conseguiu, com os meios que dispunha, porque a luz é rápida demais. No tempo que você leva para piscar os olhos ela já percorreu a distância do Oiapoque ao Xuí. Hoje todo mundo sabe que a velocidade da luz é aproximadamente 300.000 quilômetros por segundo. Um valor muito bem conhecido e certamente um dos melhor determinado em todo campo de fenômenos físicos é a velocidade com que a luz se propaga. Além disso, esta constante é uma das de maior importância em toda teoria física. A obtenção da velocidade da luz teoricamente, é feita a partir do mesmo conceito básico que se usa para chegar até a velocidade de propagaçào de uma onda mecânica, ou seja, aceitando que a luz é uma onda. A diferença é que a luz não necessita de um meio material para se propagar, embora ela também se propague em meios materiais.
As primeiras medidas da velocidade da luz
A história da busca de seu valor é natruralmente tão velha quanto a própria ciência. Empédocles foi o primeiro a sugerir que a luz requeria provavelmente um tempo finito para passar entre dois pontos. Galileu foi o primeiro a propor um método para tentar medi-la. A sugestão de Galileu era colocar, o mais afastado possível um do outro, dois homens com lanternas que podiam acender e apagar. Um deles A, descobria sua lanterna, de modo que o outro B, pudesse vê-la. Por sua vez B, descobria a sua no instante em que ele visse a luz de A, e A media o tempo entre descobrir sua lanterna e enchergar a luz de B. Certamente a experiência falhou porque o tempo de reação dos dois indivíduos era grande e também havia variações maiores do que o tempo necessário para a luz percorrer os poucos quilômetros entre os dois observadores, que é de 10-5 s.
Medidas Astronômicas da velocidade da luz
Em 1675 Rømer, astrônomo dinamarquês, fez a primeira medida utilizando uma distância astronômica em vez de terrestre. Ele observou que os eclipses do primeiro satélite de Júpiter ocorriam em intervalos ligeiramente menores menores à medida que a terra se aproximava de Júpiter, de C para A; do que quando ele se afastava de Jupiter, de A para C. Desde que o tempo entre os eclipses, tirada a média durante um ano, era bem constante (apesar do ganho total de 16’26” em 6 meses, seguido de uma perda do mesmo valor por mais 6 meses), Rømer interpretou corretamente o ganho ou a perda como sendo o tempo necessário para os sinais luminosos do eclipse atravessarem o diâmetro da órbita terrestre. Então, como o diâmetro médio da terra é de 302,4 x 106 km, e o tempo de 986 s, ele calculou a velocidade da luz como sendo de 307.200 km/s.
Método de Roemer para a medida da velocidade da luz. O intervalo de tempo entre os eclipses da lua de Júpiter parece maior quando a terra desloca de A para C do que quando ela se move de C para A. A diferença se deve ao tempo que a luz leva para percorrer a distância coberta pela Terra, durante um período de revolução do satélite.
Uma Segunda determinação apareceu por um método completamente diferente, feita em 1729 pelo astrônomo inglês Bradley. Ele evidenciou que a posição de uma estrela, observada de uma direção em ângulo reto com o movimento orbital da terra, é deslocada de sua verdadeira posição por um ângulo de 20,44 segundos de arco, que é chamado de ângulo de aberração, e resulta do fato de que enquanto a luz esta caminhando para o tubo do telescópio, este é deslocado pelo movimento da terra, de uma distância não totalmente desprezível. Nota-se que tg a = v/c onde v é a velocidade da terra e c é a velocidade da luz. Se D é o diâmetro da órbita terrestre e s é o número de segundos em um ano, então:
Experimento de Bradley para a determinação da velocidade da luz por berração.
Medidas Terrestres da velocidade da luz
O primeiro método de laboratório para medida da velocidade da luz em distâncias terrestres foi feito pelo francês Fizeau em 1849. Ele usou uma grande roda dentada girando rapidamente em frente a uma fonte brilhante que funcionava da seguinte forma:
A luz emitida por uma fonte S, atravessa a lente convergente L1, é refletida pelo espelho semi-transparente M1 e forma, no espaço, em S1 uma imagem da fonte. O espelho M1 foi coberto com uma película muito fina dando a ele uma propriedade de ser semi-espelhado, isto é a metade da luz que chega nele é refletida e a outra metade é transmitida. A luz, proveniente da imagem S1, penetra na lente L2 e emerge do lado oposto com um feixe paralelo. Após passar pela lente L3, é refletida pelo espelho M de volta, em sentido contrário, mas a sua direção original. No experimento de Fizeau, a distância d entre a imagem S1 e o espelho M foi de 8.630 m. Quando a luz atinge, novamente, o espelho M1 parte dela é transmitida, indo até o olho do observador, após atravessar a lente convergente L4. Assim, o observador verá uma imagem da fonte S1 formada por luz que terá percorrido uma distância 2d, de ida e volta entre a roda e o espelho M.
Experimento de Fizeau
É obvio que o método de Fizeau era certamente uma adaptação altamente mecanizada do método proposto por Galileu. Na experiência de Fizeau a luz, durante o percurso discutido acima, passa por uma roda dentada R1. Se esta roda gira lentamente, a imagem vista pelo observador será intermitente. A medida que sua velocidade aumenta a imagem formada no olho do observador diminui as interrupções. Contudo, podemos ir aumentando a freqüência de rotação da roda até que nenhuma imagem seja formada no olho do observador. Isto ocorrerá quando o tempo gasto pela luz para percorrer a distância 2d for igual ao tempo gasto para girar a fenda de um ângulo equivalente ao ângulo entre dois dentes consecutivos da roda dentada. Sendo isto possível, podemos encontrar uma relação matemática para calcular a velocidade da luz, isto é, o tempo t gasto para a luz percorrer a distância 2d é igual a t = 2d/c. Por outro lado, o tempo t gasto para girar a roda dentada de um ângulo a , pode ser calculado usando a frequência angular da roda; comparando as duas equações para o tempo, temos que 2d/c = 1/2NV sendo N o número de dentes e se a roda dá V voltas por segundo. Como conhecemos os valores de d, a e v, podemos facilmente calcular a velocidade da luz. No primeiro experimento realizado por Fizeau, a roda tinha 720 dentes, v = 12,609 rps, d = 8.630m e o ângulo a = 1/1.440 de rotação. Com isto ele obteve, para a velocidade da luz, o valor de c = 313.300 km/s. Numa segunda tentativa ele melhorou os seus resultados, encontrando c = 301.400 km/s, resultados estes considerados, na época, de grande precisão.
Cornu, que melhorou os detalhes de Fizeau, obteve em 1876 um valor que corrigido era de 299.950 km/s (no vácuo).
Qual é exatamente a velocidade da luz?
Uma medida da velocidade da luz usando lasers, feita pelo Bureau Nacional de Padrões dos Estados Unidos, em 1983, obteve como resultado, 299.792,4586 Km/s, com incerteza de mais ou menos 0,0003 Km/s.
A partir do ano de 1983, por decisão dos órgãos científicos internacionais, a velocidade da luz passou a ser considerada uma constante universal com valor bem determinado, exatamente igual a:
C = 299.792.458 m/s
Relatividade especial e a velocidade da luz
De acordo com a mecânica Newtoniana, não há, em princípio, um limite superior para a velocidade imposta a um corpo. Imaginemos um corpo constantemente sujeito à aceleração da gravidade (g = 9,8 m/s2). Partindo do repouso, após um ano sua velocidade seria igual à velocidade da luz no vácuo, e após dois anos, seria o dobro desta velocidade. assim a velocidade atingida parece ser ilimitada. Mas, quando tentamos obter velocidades tão altas quanto a da luz, observamos um desvio da mecânica newtoniana, sendo esta não adequada à todas as situações.
No contexto da Relatividade Especial, a velocidade da luz é o limite absoluto da velocidade em nosso universo para qualquer objeto que contenha massa real. Isto ocorre porque quando um corpo se aproxima da velocidade da luz, mais e mais da energia fornecida ao corpo aparece sob a forma de massa adicional. Assim, quanto mais rápido o corpo, mais a energia cinética envolvida no movimento tem como efeito principal causar um aumento em sua massa-energia em lugar de velocidade, sendo que a massa-energia vai ao infinito nos limites da velocidade da luz. A síntese disto está expresso em uma das mais importantes equações da física, proposta por Albert Einstein:
E = m*c2
Albert Einstein
"A velocidade da luz em qualquer sistema de referência tem o mesmo valor, independente do movimento do referencial".
VELOCIDADE DA LUZ NO TELEVISOR
Objetivo
Medir a velocidade de uma onda eletromagnética usando um televisor.
Descrição
Ligue um televisor, de preferência preto-e-branco, dos antigos, com antena interna e dirija essa antena na direção da antena da emissora. Coloque uma placa grande de metal na mesma linha que as antenas, ficando a antena interna entre a placa e a antena da emissora. Vá afastando a placa, mantendo-a perpendicular à linha das antenas, e observe a imagem. Para uma dada distância a imagem se deteriora visivelmente. Afastando um pouco mais, a imagem volta melhorar. Afastando mais um pouco, novamente, a imagem piora. Anote as distâncias em que a imagem se deteriora. O comprimento de onda do sinal da emissora será dado por 2xL/n, onde L é a distância entre a placa e a antena interna; n é ordem da posição onde a imagem fica ruim, isto é, n=0,1,2, etc. Com esses valores, acha-se uma média para o comprimento de onda. Multiplicando esse comprimento de onda pela freqüência do sinal da emissora, obtém-se a velocidade da onda, que é a velocidade da luz.
Análise
O comprimento de onda dos sinais de televisão é sempre da ordem de poucos metros. Sendo L esse comprimento, a velocidade da onda é dada por c = Lf, onde f é a frequência da onda. O televisor recebe dois sinais: o sinal vindo da emissora e o sinal refletido na placa de metal. Quando a distância entre a antena interna e a placa é um número inteiro de meios comprimentos de onda dá-se interferência destrutiva e a imagem se deteriora.
Material
Material
Televisor, de preferência velho e preto e branco. Televisores coloridos mais modernos costumam ter um circuito que ajusta a freqüência de sintonia automaticamente. Isso é muito bom para o telespectador normal, mas, péssimo para sua experiência pois você quer exatamente deteriorar a imagem por interferência. Placa metálica razoavelmente grande (1 metro quadrado ou mais).Antena interna.
Dicas
A placa metálica pode ser uma meia-folha de compensado coberta de papel alumínio. Use o ajuste fino do televisor para dessintonizar ligeiramente a recepção do sinal. Isso facilita a determinação dos pontos de mínimo evitando que o circuito de sintonia automática atrapalhe a observaç Obtenha o valor da frequência da emissora telefonando para lá e perguntando. Faça isso com mais de uma emissora para medir com mais de um valor de frequência. Mas, não esqueça que cada emissora pode ter uma posição diferente de suas antenas.
>
Deixe seu Comentrio:
Temos Atualmente:
Temos Atualmente:
>
Categorias:
Assinar:
Postar comentários (Atom)
0 comentários:
Postar um comentário